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Using methods of statistical physics, we present rigorous theoretical calculations of Eigen’s quasispecies
theory with the truncated fitness landscape which dramatically limits the available sequence space of informa-
tion carriers. As the mutation rate is increased from small values to large values, one can observe three phases:
the first �I� selective �also known as ferromagnetic� phase, the second �II� intermediate phase with some
residual order, and the third �III� completely randomized �also known as paramagnetic� phase. We calculate the
phase diagram for these phases and the concentration of information carriers in the master sequence �also
known as peak configuration� x0 and other classes of information carriers. As the phase point moves across the
boundary between phase I and phase II, x0 changes continuously; as the phase point moves across the boundary
between phase II and phase III, x0 has a large change. Our results are applicable for the general case of a fitness
landscape.
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I. INTRODUCTION

Developing realistic evolution models poses an important
challenge for evolution research �1,2�. After the seminal
work of Eigen quasispecies theory �3� and successful experi-
ments with the self-replication of macromolecules �4,5�,
there have been intensive theoretical studies on molecular
models of biological evolution �6–22�. In Eigen’s quasispe-
cies theory �3,10�, an information carriers �DNA or RNA� of
length L is represented by a one-dimensional spin model of
length L with +1 representing purines �R� and −1 pyrim-
idines �Y�. The whole space of information carriers of length
L contains M =2L different sequences, which can be repre-
sented by Sk, k=0,1 , . . . ,M −1; the relative frequency and
the reproduction rate of the sequence Sk are represented by xk
and rk, respectively. Such xk satisfy the normalization condi-
tion: ��k=0

M−1xk=1�. S0 is the master sequence �also called peak
configuration� with the highest reproduction rate r0=A�1.
The structure of rk is called the fitness landscape. The num-
ber of different bases between Si and Sk is represented by dik
and is called the Hamming distance between Si and Sk. In the
symmetric fitness landscape, the fitness of Sk is a function of
the Hamming distance d0k between Sk and the master se-
quence S0, i.e., sequences with the same Hamming distance
from the master sequence have the same reproduction rate.

The simplest fitness landscape is the single peak fitness, in
which r0=A�1 and rk=1 for k�0 �3,10,15�. In earlier pa-
pers, we have studied the fitness as a general function of the
Hamming distance from the master sequence �16,17� or
Hamming distances from several peak configurations �18�.
We have also used the Hamilton-Jacobi equation �HJE�
method �20–22� to a diploid evolution model with the sym-
metric fitness landscape �23�. In such studies, all sequences
have nonzero reproduction rate.

However, realistic fitness landscapes are not smooth; they
include neutral and lethal types, as observed in recent experi-

mental studies with RNA viruses �24–26�. In the neutral
type, each mutant on the neutral network has about the same
reproduction rate as the master sequence and the fitness of a
mutant is not simply a function of the Hamming distance
from the master sequence. In the lethal type, some mutants
have zero reproduction rate. In a special case of the lethal
type, all mutants Sk with Hamming distances d0k larger than
a critical value n have zero reproduction rate, where d0k is
the Hamming distance between Sk and S0. Such a lethal type
is called the truncated fitness landscape.

In most evolution papers, symmetric fitness landscapes
are considered. While solving evolution models, the vast ma-
jority of results for the mean fitness have been derived using
uncontrolled approximations even for the symmetric fitness
landscapes, with too simplified sequence space �27� and ig-
noring back mutations �10�. A simplified geometry with only
two �Hamming� classes for sequences with nonzero fitness
was used in studies that investigate the role of lethal mutants
in evolution �28�. Furthermore, in most evolution models the
whole sequence space is assumed to be available for the
evolving genome.

However, the sequence space that a limited population
can use is severely restricted to a small part of the sequence
space surrounded by an unsurmountable moat of lethal mu-
tations. In this paper, we attempt to rigorously solve the case
of a truncated fitness landscape for a symmetric fitness land-
scape.

II. THE SYSTEM

In Eigen’s quasispecies theory �3,10�, the sequence Si pro-
duces offspring of the parental type with the probability Qii
=qL�Q and offspring of another �mutant� type Sk �k� i�
with the probability Qki=qL−dik�1−q�dik, where q is the aver-
age incorporation fidelity and dik is the Hamming distance
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�i.e., the number of different bases� between Si and Sk.
Eigen proposed that xi satisfy the equations �3,10�

dxi

dt
= �Qiiri − �

k

rkxk�t��xi�t� + �
k�i

Qikrkxk�t� . �1�

The mean fitness of the system is

R = �
k=0

M−1

rkxk�t� .

It is convenient to work with the error rate u�L�1−q�, lead-
ing to Q=e−u. In this paper, we consider only the case L
→�, u is finite. Eigen maps each genotype precisely into a
node on the L-dimensional hypercube and has thus the cor-
rect connectivity for each type. The minimal number of steps
leading from one position i in sequence space to another one,
j, is the Hamming distance dji.

In the evolution process, the information content of the
population can be maintained only when the selection force
is higher than the dissipating one �mutation�. Otherwise,
above the error threshold, the information gets lost.

It has been shown that the system of nonlinear differential
equations in Eq. �1� can be transformed into an infinite sys-
tem of linear equations, connecting Eigen’s model with sta-
tistical mechanics �7,9�. For a single peak fitness landscape
�r0=A and ri�0=1�, the following condition for conserving
the master sequence in the population holds �3,10�:

AQ � 1, �2�

where AQ=1 is the error threshold.
At the selective phase one has �29�

x0 =
QA − 1

A − 1
	 1, �3�

and xi	1 /Ld for d�L, where d is the Hamming distance
from the wild sequence; see Eq. �21� in �17�. We choose the
sequences with 1� l�L from the corresponding lth Ham-
ming classes. A scaling by Eq. �3� exists also for the rugged
�random-energy-model-like� fitness landscapes �11�. Scaling
like the one in Eq. �3� has also been applied in models of
population genetics with few alleles. In realistic fitness land-
scapes, however, the wild type is present only in a few per-
cent. Assuming neutrality, we can attain such scaling: a sub-
stantial fraction of one-mutation neighbors of the wild
sequence has the same high fitness. Neutrality increases the
probability of such mutants and suppresses x0 as low as

x0 	 1/
L . �4�

This result could be derived easily using Eq. �6� in �30� for
the case in which there is a central neutral sequence and
large fracture of neutral sequences among the neighbor se-
quences of the central sequence. In nonselective phase, one
has

x0 	 1/M . �5�

The error threshold phenomenon closely resembles the
ferromagnetic-paramagnetic phase transition �10�, where the
fitness of the system corresponds to the microscopic energy

of the physics system, the mean fitness of the quasispecies to
the free energy, and the mutation rate to temperature. To
identify the different phases in statistical physics, one uses
the free energy and also the order parameters. A phase tran-
sition occurs when, during a change of temperature, the ana-
lytical expression of the free energy changes. Order param-
eter changes also: while magnetization is nonzero in the
ferromagnetic phase, it is zero at high temperatures and in
the absence of a magnetic field. A phase transition in evolu-
tion is identified by observing the mean fitness R=�ixiri and
choosing proper order parameters, for instance the degree of
distribution around the master sequence, and the surplus pro-
duction, s=�ixi�1−2d0i /L�, where d0i is the Hamming dis-
tance from wild type.

Instead of the four-letter alphabet of genotypes, we con-
sider only two symbols in a genome: the spins �alleles� “�”
and “�,” thus now M =2L �6�. Base substitutions correspond
to sign changes of the spins. It is particularly easy to analyze
landscapes where the fitness values are simple functions of
the Hamming distance �6�. The L-dimensional sequence
space is then transformed into a quasi-one-dimensional linear
chain of mutant classes l, where pl=Nlxl comprises all types
with the Hamming distance number l from the master and
the fitness value Jl. Nl=

L!
l!�L−l�! is the number of different

genotypes in the l class. The parameter l can be identified as
a phenotype parameter.

There is a principal difference between the quasi-one-
dimensional model, derived rigorously from the initial se-
quence space with 2L sequences �6,13,31�, and the one-
dimensional one considered in �27� and other articles. In
contrast to other one-dimensional models used earlier �27�
where each class contains only one type, in our case any
class l is composed of Nl types and thus retains the connec-
tivity; the Hamming distance between two sequences in the
same class can take any value from 0 to 2l. In the case of the
parallel model �12�, when evolution equations are formulated
for class probabilities, the effective mutation rates to the
lower class 	�L− l� /L, and to the higher class l /L are differ-
ent and change with l �13,31�. In contrast, in the one-
dimensional model of �27� these mutation rates are
l-independent.

In our quasi-one-dimensional model, Jl can be trans-
formed into the f�k�, where f�k� is an appropriate smooth
function with the maximum at k=1, and f�0�=1. The “mag-
netization” parameter k is defined as k��1−2l /L�.

Consider now the solution of the Eigenmodel with sym-
metric fitness landscape. The mean fitness R for the fitness
function f has been derived as follows �17�:

R = max��f�k�Q�1−
1−k2�
�−1�k�1 = f�k0�Q�1−
1−k0
2�, �6�

where k0 is the location of the maximum on the right-hand
side of the first equation. s can be identified from the mean
fitness expression using an equation

f�s� = R �7�

as has been derived in �13� for the parallel model. Thus in
Eq. �6� the maximum is at some k0, an order parameter of the
system quantifying the bulk spin magnetization, while the
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surplus s corresponds to the surface magnetization. Equation.
�6� is an exact expression �at the infinite genome limit�,
while in other studies �10� back mutations have been ig-
nored. As shown by Tarazona �9�, the Eigenmodel is not
equivalent to the simple ferromagnetic system of spins in the
lattice, but only to those spins interacting both inside the
bulk of the lattice and on the surface of the lattice. In this
work, different phases will be characterized by R, the mean
fitness; by k0, the bulk magnetization; by x0, the fraction of
the wild type of the total population; and by s, the surplus.
When k0=0, resulting in s=0, the population spreads statis-
tically in sequence space, indicating a nonselective phase.

We gave the mean fitness and error threshold �when s in
Eq. �7� becomes 0� for the symmetric fitness landscape. The
point is that this transition has also an information-
theoretical meaning. Eigen actually found the error threshold
from an information-theoretical consideration of his model.
Eigen’s idea �information-theoretical content of a model� re-
sembles the investigation of information-theoretical �optimal
coding� aspects of disordered systems, developed in statisti-
cal physics two decades later �32,33�. In the random energy
model of spin glass �34�, the phase transition point was de-
rived using the information theory analogy �32,33�, and was
found to yield results corresponding to those derived by
Eigen. The deep information-theoretical meaning of error
threshold transition in evolution models �equivalent to Shan-
non inequality for optimal coding� is a solid argument that a
transition such as the one in Eq. �2� exists for any �irregular,
with lethal or neutral mutants� fitness landscapes.

III. WAGNER AND KRALL THEOREM

Wagner and Krall �27� considered a population composed
of the master and an infinite linear chain of mutants, where
each type mutates only to its next neighbor and the fitness ri
decreases monotonically. When there is no low bound of the
fitness, an absence of the error threshold transition was de-
rived. Indeed, when in Eq. �6� f�0�=0, there is no error
threshold transition. But in more general symmetric fitness
landscapes with a finite f�0�, this ceases to be valid. The
proof is as follows: the maximum types are located at the
Hamming distance class L /2 or, equivalently, at k=0. Con-
sider the logarithm of the right-hand side in Eq. �6�, and
expand near k=0,

�1 − 
1 − k2�ln Q + ln f�k� � − u
k2

2
+ ln�f�0�� + ck�, �8�

where c and � are parameters describing the function f�k�,
and ln f�k�−ln f�0�	ck� at k→0. When ��2, Eq. �8� has a
maximum at k�0, fulfilling the condition for selection.
When �	2, it can be demonstrated that there is a maximum
at k=0 for a sufficiently low reproduction fidelity Q, there-
fore a sharp error threshold transition results. In the too sim-
plistic model of Wagner and Krall, the right-hand side of Eq.
�8� lacks the quadratic term, resulting in a monotonic func-
tion of k and the absence of phase transition. In the Eigen-
model the quadratic term holds, breaking the monotonic
character of R in Eq. �8� and invoking the error threshold.

IV. TRUNCATED SINGLE PEAK FITNESS LANDSCAPE

Let us consider a symmetric fitness landscape, where
there is nonzero fitness only to some Hamming distance d
from the reference sequence S0. Here we define the truncated
landscape as a single-peak one where all sequences beyond
the Hamming distance d�L�1−K� /2 are lethal,

r0 = A; rl = 1, 1 � l � d; rl = 0 l � d . �9�

Now we have

M = �
l=0

d
L!

l!�L − l�!
�10�

nonlethal sequences.
To define the mean fitness, we compare the expression of

Eq. �6� inside the region K�k�1 and at the border k=K.
The investigation of this model is instructive; see Figs.

1–4. When QA�1 the phase is selective �phase I�; x0 is
given by Eq. �3�, k0=1, R=QA �35�. When

1 � QA � Q1−
1−K2
, �11�

a new phase II prevails with

k0 = 1, R = QA . �12�

In phase II, x0 decreases exponentially with L. The expres-
sion of x0 is calculated in the Appendix �see Eq. �A19��,

x0 	 exp�L�
K

1

dm
1

2
ln

ln A

u
+
� ln A

u
�2

− 1 + m2

1 + m � .

�13�

At the transition point between phase I and phase II, the
expression in the exponent becomes zero, therefore the tran-
sition is continuous.

When

1.5 2 2.5 3
1�Q

1.5

2

2.5

3

A

I II

III

FIG. 1. Phase structure for the model with the overlap parameter
for truncation point K=0.9 and mutation rate u=1. I, selective
phase at QA�1, where A is the fitness at the peak and Q=e−u is the
errorless copying probability of the genome. II, intermediate phase

at QA�1 and QA�Q1−
1−K2
. III, nonselective phase at QA

�Q1−
1−K2
.
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QA � Q1−
1−K2
, �14�

the k0 is at the border and we have the nonselective phase III,

k0 = K, R = Q1−
1−K2
. �15�

The expression for x0 is defined in the Appendix, Eq. �A15�.
There is some focusing around reference sequence, and x0 is
higher than 1 /M. For K=0.9, we have x0�1 /M0.66.

The transition between phases II and III is a discontinuous
one; x0 decreases M1 times, �see Eq. �A21��,

M1 	 exp�L

2
�

K

1

dm ln

1 − K2 + 
m2 − K2


1 − K2 − 
m2 − K2� . �16�

Figure 4 illustrates different behavior of x0 in three phases.
While in the ordinary Eigenmodel �without truncation of

fitness� there is a sharp phase transition with the jump of the
x0 behavior from Eq. �3� to the 1 /M, in the truncated case
this sharp transition is moved to the transition point between
phases II and III. Now x0 is continuous at transition point
between phases I and II. For the Summers-Litwin case with
K=1 we have M1→1, therefore the transition disappears, as
has been obtained in �28�, and for the K=0 case we get the
result of the Eigenmodel, M1	2L. Our formulas are derived
for the case K	0.

Is phase II a selective one in the ordinary meaning?
Clearly, its mean fitness is higher than in a typical nonselec-
tive phase like phase III. This point was clarified by calcu-
lating the surplus, replacing the steplike fitness function near
the borderline �k=K� with a smooth function f�k� that
changes its value from 1 to 0 near K. In both phases II and

III, with QA�Q1−
1−K2
, the majority of the population is

near the borderline, both on the viable and the lethal side.
Therefore, while there is a kind of phase transition with some
population rearrangement, phase II is identified as an inter-
mediate one, with x0�1, as in the nonselective phase. Sum-
mers and Litwin �28� first realized that k0→1 in a truncated
fitness landscape and tried to analyze the phenomenon. Un-
fortunately, they used too simplistic a model where all mu-
tants except the nearest neighbors of the master type were
lethal. Figure 2 compares the relative concentration of the
master sequence x0 at various A in the single-peak fitness
landscape described in �3,10�, with the truncated fitness land-
scape with d=8, and the case considered by Summers and
Litwin. Note the strong dependence of the master concentra-
tion on the �ln A� /u in the more realistic landscape, leading
to an error threshold, in contrast to the case in �28�. The
population profiles of the truncated fitness landscape at dif-
ferent mutation rates are shown in Fig. 3, showing the tran-

1.5 2.0 2.5 3.0 3.5
A

�8

�6

�4

�2

0
log10�x0�

FIG. 2. Semilogarithmic plot of x0 vs A for a single-peak fitness
landscape truncated at d�8 with u=1, L=3000. The upper curve
corresponds to the Summers-Litwin model; the middle curve corre-
sponds to the truncated fitness landscape by Eq. �9�. The square
boxes correspond to a single-peak fitness model. For ln�A��1, the
Eigenmodel with single-peak fitness has x0=0.
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FIG. 3. Truncated Eigenmodel with d=8, A=3, u=1, and L
=3000. The distribution of probabilities of Hamming classes pl at
different mutation rates �u values�. At high accuracy �circles� the
population groups around the master type, at intermediate accuracy
the population peaks at the truncation border, and at low accuracy
the master type has practically disappeared and the majority of the
progeny is lethal.

B C

D

E F

0.0 0.2 0.4 0.6 0.8 1.2 1.4
ln�A��u

�1.0

�0.8

�0.6

�0.4

�0.2

0.2

ln�x0��L

FIG. 4. �Color online� The graphics of �ln x0� /L for the trun-
cated Eigenmodel at infinite L with K=1 /2, u=1. The I phase
�curve EF� is at 1� ln A /u, the second �curve DE� at 0.88
� ln A /u�1, and the third �curve BC� at 0� ln A /u�0.88. The
curve CD corresponds to the jump at the border between phases II
and III. In the first phase, �ln x0� /L	O�1 /L�.
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sition from a master-dominated population to a widespread
mutant distribution in the nonselective case.

In Tables I–III, we give the results of numerics for differ-
ent phases. Mean fitness is well confirmed numerically, while
the accuracy of numerics is poor to get correct values of x0 in
the second phase, 2.37�A�2.77 corresponding to 0.88
� ln�A� /u�1.

How can the phases be identified? The fact is that the
parameters k0 and s have different meanings in a statistical
physics approach. This subject has been well analyzed in a
series of articles by Baake and her co-authors �13,14�. s and
k0 have been identified with the transverse and longitudinal
magnetization of spins in the corresponding quantum model.
We just link s with the mean characteristic of the phenotype,
and k0 with the repertoire of genotypes. The consensus se-
quence should be determined experimentally not only via
distribution xi, but also via distribution x̂i��xi�2 /� j=0

M �xj�2.
Consider

k̂l =
Nl�xi�2

�
j

�xj�2
, �17�

where the sequence i belongs to the lth phenotype class
with Nl sequences. Nlxi is just the total “probability” measure
of the phenotype according to the measure x̂i. Having such
data, one can simply identify the phase structure; see Eq.
�A29�.

In the Appendix, we solve the truncated fitness models for
the general monotonic piecewise smooth function f�x�. The
numerics confirms well our analytical results for the new
phase.

V. DISCUSSION

We rigorously solved �at the infinite genome length limit�
Eigen’s model for the truncated selection using the method
of �17� as well as methods of statistical mechanics, including
the analogy of the error threshold to the ferromagnetic-
paramagnetic transition. This analogy is a complicated criti-
cal phenomenon, presented by Leuthäusser and Tarazona
�7,9� and well analyzed by Baake and co-authors �12,13�.
Instead of using only one order parameter to identify the
phase of the model �magnetization�, it is necessary to take
into account several order parameters describing the order of
spins in the bulk lattice and at the surface. Recently the ex-
istence of an error threshold was questioned �28� in the case
of truncated selection. In this model, the available sequence
space has been shrunk to an extremely small size. Figure 2
illustrates that the unrealistic assumption in �28� changed the
relative concentration of the master type by more than three
orders of magnitude. Nevertheless, this work was certainly
useful for clarifying the concept of quasispecies: the authors
first realized the intriguing features of a truncated selection
landscape. We found a new evolution �intermediate� phase,
when there is no successful selection via phenotype trait �the
majority does not share the trait�, while there is some group-
ing of population at the genotype level. The intermediate
evolution phase differs from the nonselective phase, the fre-
quency of wild type being 1


M
or higher in the intermediate

phase compared with 	 1
M in the nonselective phase of the

Eigenmodel. We proposed a parameter to measure the hidden
grouping of population in a genotype level, Eq. �17�. Such
hidden ordering could be important in the case of a changing
environment: it is possible to force the whole population to

TABLE II. Eigenmodel with truncated fitness, K=1 /2, L=500, u=1, f�x�=exp�cm2 /2�. R is the mean
fitness calculated from numerics. The transition between phases I and II is at c=2, and between phases II and
III at c=1 /
1−K2�1.1547. In phase I we have s=1−1 /c, ln�R� /u=c�1−1 /c�2 /2. In phase II, s=K,
ln�R� /u=c�1−1 /c�2 /2. In phase III, s=K, ln�R� /u=cK2 /2+
1−K2−1.

Phase III III II II II I I I

c 0.5 1 1.2 1.3 1.5 1.9 2.1 3

ln�R� −0.090 −0.016 0.0163 0.035 0.084 0.212 0.287 0.665

ln�R� theory −0.071 −0.009 0.0160 0.034 0.083 0.213 0.288 0.666

s 0.507 0.507 0.507 0.508 0.510 0.525 0.541 0.663

s theory 0.5 0.5 0.5 0.5 0.500 0.5 0.523 0.666

−ln�x0� 223 199 185 177 160 131 120 84

TABLE I. Eigenmodel with truncated single-peak fitness landscape for L=1000, u=1, K=1 /2. The
transition between phases I and II is at A�2.778, and between phases II and III at A�2.377. R is the
numerical mean fitness.

Phase III II II II II I

A 2.3 2.4 2.5 2.6 2.7 2.8

R 0.859 0.883 0.919 0.957 0.993 1.030

R theory 0.875 0.882 0.919 0.956 0.992 1.029

x0 7
10−54 2
10−24 4
10−16 10−9 4
10−4 0.0167

x0 theory 0.0164
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extinction changing the fitness of a small fraction �much
smaller than 1 /L, but much higher than 1 /M, where M is the
number of different genotypes� of viruses in the population.
We recommend virologists to measure the consensus se-
quence not only using the probabilities xi, but also the
xi

2 /� jxj
2. The evolution picture of the virus population is ro-

bust when two versions of consensus sequence are close to
each other. In experiments �25�, an evolution picture has
been observed that is qualitatively similar to the intermediate
evolution phase.

How the error threshold transition is connected to the vi-
rus extinction in virus experiments is another story. Several
mechanisms are possible: an error catastrophe, as well as a
critical mean fitness in order to maintain viral growth �36�. In
this work, we observed the new phase with single peak and
symmetric landscapes, but this phase exists probably for any
�including irregular� fitness landscape with a lethal wall in
sequence space.
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APPENDIX A: APPLICATION OF THE HJE FOR A
TRUNCATED SYMMETRIC LANDSCAPE

Let us apply the Hamilton-Jacobi equation �HJE��37,38�
method to the Eigenmodel �20–22� with the truncated sym-
metric fitness landscape defined by a piecewise smooth,
monotonic fitness function f�m�,

f�m� = f0�m�, K � m � 1;

f�m� = 0, − 1 � m � K . �A1�

Here f0�m� is a monotonic analytical function.
We denote by k0 the maximum point in Eq. �6�. As s is

defined by Eq. �7�, for the monotonic fitness function we
obtain

s � k0, �A2�

and there is only one solution of Eq. �7�.
Using an ansatz

pl = exp�LU0�m,t�� , �A3�

m=1−2l /L, one can derive the following equation �20�:

L
�U0�m,t�

�t
= f0�m�e−uexp�u�cosh�2

�U0�m,t�
�m

�
+ m sinh�2

�U0�m,t�
�m

��� . �A4�

In �20� the HJE has been derived for the sequence probabili-
ties, while Eq. �A4� is for the class probabilities pl. Equation
�A4� transforms into the corresponding HJE for the sequence
probabilities �20,22� after the mapping U0�m , t�→U0�m , t�
+ 1+m

2 ln 1+m
2 + 1−m

2 ln 1−m
2 . The HJE approach works for any

piecewise smooth fitness functions. Equation �A1� is such a
case. To solve our truncated case, we should just use differ-
ent analytical solutions for the regions −1�m�K and K
�m�1.

Assuming an asymptotic U0�m , t�= R
L t+U�m�, we derive

�20�

R = f0�m�e−uexp�u�cosh�2
dU�m�

dm
� + m sinh�2

dU�m�
dm

��� ,

�A5�

where R is calculated by Eq. �6�. The surplus s is defined as
the value of m where U�m� has a maximum. When s is inside
the region �K ,1�, U��s�=0. At the extremum point with
U��m�=0, Eq. �A5� gives f�s�=R. As for a monotonic fitness
function there is a single solution for Eq. �6�, U�x� has a
single maximum point in this case, and we take U�s�=0.

We use Eq. �A5� to define pl with an accuracy O�1� for
ln pl, calculating U�m�=U�s�+�s

mU��m�dm for the corre-
sponding m=1−2l /L. Moreover, it is possible to calculate
ln pl with a higher accuracy O�1 /L�. In �20�, we gave ex-
plicit formulas for the case of a parallel model. It is possible
to construct similar results for the Eigenmodel as well.

We have two branches of solutions for Eq. �A5�

U��m� =
1

2
ln

q � 
q2 − 1 + m2

1 + m
,

TABLE III. Eigenmodel with truncated fitness, K=1 /2, L=500, u=1, f�x�=exp�cm3 /3�. The transition
point is at c�2.31, m0=0.866 in the model without truncation. The transition point between phases I and II
is at c�2.79.

Phase III III III II II II I I

c 0.5 1 2.2 2.4 2.5 2.6 3 4

ln�R� −0.135 −0.016 −0.022 0.0202 0.0433 0.0676 0.172 0.459

ln�R� theory −0.11 −0.092 −0.042 0.0201 0.0435 0.0678 0.171 0.460

s 0.507 0.507 0.510 0.514 0.518 0.523 0.563 0.698

s theory 0.5 0.5 0.5 0.5 0.5 0.5 0.556 0.701

x0 230 216 142 128 122 117 98 70
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q =
1

u
ln

R

f�m�
+ 1, �A6�

where U��m�= dU�m�
dm .

The choice of different solutions is a principal point. We
choose the proper branch assuming the following: �i� U�m� is
a continuous function, �ii� U��m� is a continuous function at
K�m�1, and �iii� U�m� is a convex function.

The transition between two branches �� solutions in Eq.
�A6�� is only at the point where q2−1+m2=0 or

R = f�m�e−u+u
1−m2
. �A7�

According to Eq. �6�, R is the maximum of the right-hand
side. Thus we should choose only the branch with a “�” sign
when k0 is at the border, k0=K. When k is inside the interval
�K ,1�, we choose the “�” solution for the interval �k0 ,1�
and the “�” solution in the interval �K ,k0�.

For the V�m�=ln�pl /
Nl� /L we have another equation
�20�,

R = f0�m�e−u exp�u�cosh�2
dV�m�

dm
�
1 − m2�� . �A8�

The minimum of the right-hand side via V� just gives the

f�m�e−u+u
1−m2
. Thus at the maximum point m=k0 of func-

tion V�m� we have V��k0�=0. In this paper, we consider the
case in which Eq. �6� has a single solution k=k0.

Solutions of Eq. �A5� and �A8� are simply related �20�,

V�m� = U�m� +

�1 + m�ln
1 + m

2

4
+

�1 − m�ln
1 − m

2

4
.

�A9�

Consider now the following different phases of our
model: the selective one with K�k0�1, K�s�1; the non-
selective one with k0=K, s=K; and the intermediate one with
K�k0�1, s=K.

Selective phase

Now R is given by Eq. �6� with K�k0�1. We used the
“�” solution of Eq. �A6� for k0�m�1 and the “�” solution
for K�m�k0. The maximum points of both functions U�m�
and V�m� are inside the interval �K ,1�. We have U��s�=0
and V��k0�=0. The formulas for the steady-state distributions
are the same as in �20�. We have a mean fitness

R = f�k0�e−u+u
1−k0
2
. �A10�

We have U�s�=0. For the pl, m= �1−2l /L�, k0�m�1, we
derive an expression

pl = exp�L

2
�

k0

m

dm ln
q − 
q2 − 1 + m2

1 + m

+
L

2
�

s

k0

dm ln
q + 
q2 − 1 + m2

1 + m � . �A11�

For m�k0, we have

pl = exp�L

2
�

s

m

dm ln
q + 
q2 − 1 + m2

1 + m � . �A12�

Nonselective phase

Now the maximum of Eq. �6� is at the border k0=K, and
we have

R = f�K�e−u+u
1−K2
. �A13�

We use the “�” solution of Eq. �A6� for the whole interval
K�m�1. We take U�K�=0 as the maximum of population
is at the border with m=K. For the pl, m= �1−2l /L� we have
an expression

pl = exp�L�
K

m

dm
1

2
ln

q − 
q2 − 1 + m2

1 + m � �A14�

and the maximum is for pd with m�1− 2d
L =K.

For the single-peak fitness case �f�1�=A and f�m�=1 for
m�1�, we have q=
1−K2 and

x0 � p0 	 exp�L

2
�

K

1

dm ln

1 − K2 − 
m2 − K2

1 + m � .

�A15�

For the 1 /M we have an expression

1

M
	 exp�L

2
�

K

1

dm ln
1 − m

1 + m� . �A16�

Intermediate phase

Now mean fitness is given by Eq. �A10� with K�k0�1
and s=K. We used the “�” solution of Eq. �A6� for k0�m
�1 and the “�” solution for K�m�k0. We take U�K�=0 as
the maximum of population is at the border with m=K.
When m�k0, we have

pl = exp�L

2
�

K

k0

dm ln
q + 
q2 − 1 + m2

1 + m

+
L

2
�

k0

m

dm ln
q − 
q2 − 1 + m2

1 + m � . �A17�

In the case of K�m�k0, we have

pl = exp�L

2
�

K

m

dm ln
q + 
q2 − 1 + m2

1 + m � . �A18�

For the SP case, we have q= ln A
u and

x0 = exp�L

2
�

K

1

dm ln

ln A

u
+
� ln A

u
�2

− 1 + m2

1 + m � .

�A19�

Above the transition point �ln A� /u=
1−K2, Eq. �19� gives
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x0 = exp�L

2
�

K

1

dm ln

1 − K2 + 
m2 − K2

1 + m � . �A20�

Comparing Eqs. �A15� and �A20�, we see that at the transi-
tion point there is a jump, x0 decreases M1 times,

M1 	 exp�L

2
�

K

1

dm ln

1 − K2 + 
m2 − K2


1 − K2 − 
m2 − K2� . �A21�

For K=0.5, Eq. �A20� gives ln�x0� /L�−0.057, while
ln�M� /L�−0.56. Thus above the transition point to the third
phase

ln�x0� 	
1

M0.1 . �A22�

Consider the case K=0.99. Now we have ln�x0� /L�−0.01
and ln�M� /L�−0.031. Equation �A20� gives

ln�x0� 	
1

M0.32 . �A23�

Jumps of xl in general case

Consider the evolution model with general fitness func-
tion f�x�. Assume that without truncation the error threshold
transition is a discontinuous one, and there is a jump from
nonzero k0�0 in the selective phase to k=0 solution in Eq.
�6� for the nonselective phase. Let us introduce the trunca-
tion. Choosing K�k0, we have three phases �see Table III�
and x0 decreases M2 times at the transition point between
phases II and III,

M2 	 exp�L

2
�

k0

1

dm ln

1 − K2 + 
m2 − K2


1 − K2 − 
m2 − K2� . �A24�

If in the original �without truncation� model the error thresh-
old transition is a continuous one with k0=0, after truncation

we have different expressions for x0 in the II �k0�K, s=K�
and III �k0=K, s=K� phases while continuous transitions I
→ II and II→ III; see Table II. We have a similar behavior for
the phase transitions in the case of an originally �without
truncation� discontinuous error threshold transition, if the
truncation parameter K is chosen too large, K�k0.

Characterization of the intermediate phase

Consider again the intermediate phase. Let us derive an
important constraint for the population of the class at the
Hamming distance n�L�1−k0� /2. For the corresponding V,
we have

V�k0� �
1

L
ln

pn


Nn

. �A25�

As pd	1 �the majority of population is at the border with the
overlap parameter K= �1−2d /L��, we have

V�K� �
1

L
ln

1

M

�A26�

as M �NK �or �ln M −ln NK�� ln M�. We proved before that
V�m� has a single maximum �in our case with a single solu-
tion for the maximum point k0 in Eq. �6��. Thus

V�k0� � V�K� , �A27�

which gives

pn �

Nn


M
. �A28�

The last inequality supports the choice of order parameter in
Eq. �17�.

For the single-peak case n=0, and we get from Eq. �A28�

x0 �
1


M
. �A29�

Equations �A22� and �A23� give even higher values for x0.
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